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Second order schemes for hyperbolic systems are compared with respect to stability 
properties and minimization of phase errors. Among the schemes that utilize no points 
beyond a nine point lattice those with the smallest phase errors are a Wang type splitting 
scheme, Leapfrog, and Lax-Wendrof? (written as a two-step scheme). Because of its 
optimal permissible time step the time splitting scheme is to be preferred. Both the 
Burstein and MacCormack schemes are found to be weakly unstable and have larger 
phase errors while the rotated Richtmyer method has a much larger phase error than these 
other schemes. It is possible, however, to reduce the phase error by using points beyond 
the eight nearest neighbors. However, the Richtmyer method together with its generaliza- 
tion by Gourlay and Morris still have very large phase errors. The method of Fromm 
together with the SHASTA code are nonlinear schemes that do have reduced phase 
errors. However, because of the smaller permissible time steps coupled with additional 
complexities it would seem more worthwhile to use higher order schemes once one is 
willing to use data beyond the nine point rectangular mesh. Numerical experiments, 
with vector equations, are presented that confirm these results. 

I. INTRODUCTION 

In this paper we shall analyze the stability properties and phase errors of several 
two-dimensional second-order schemes. In order to limit the scope of the study 
we shall consider only explicit multistep schemes that depend on data at the pre- 
vious time level. The use of implicit schemes is generally not worth the additional 
computational effort for nonlinear hyperbolic problems. We shall concentrate on 
schemes that use information within a nine point rectangular lattice at the previous 
time level. Schemes that use mesh points beyond this lattice present additional 
difficulties near boundaries, especially curved boundaries. Furthermore, for 
problems where boundaries present no difficulties, e.g. periodic boundary condi- 
tions, it is usually more advantageous to use methods of higher order than second 
order. Nevertheless several schemes that use points beyond this lattice will be 
mentioned as they have some interesting properties and are occasionally used in 
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PHASE ERROR FOR HYPERBOLIC PROBiXMS 

practice. Thus, the schemes that we shall discuss can be viewed as rn.~~id~rnens~on~~ 
generalizations of the Lax-Wendroff method, though some comparisons with the 
Leapfrog method will be made. 

We shall consider the general equation 

H!t -t-L< + g, = 0, ,I\ ,’ 

where U, f, g are vectors. Equation (I) can also be written as a quasilinear syste,m 
of equations 

N’t + Aw, + B1vy = 0, (2’) I 

where we shall assume that A and B are simultaneously symmetrizable. We sha!l 
define the phase error only for the case where A and B commute, though the 
results seem to be applicable to more general systems. In fact, the matrices A and B 
do not commute in the sample problem used for testing these schemes. When A 
and B do commute we define the numerical phase as 

P(<, 7) = -arctan[(Im G)(Re G)-l], 

where l, 9 are the Fourier variables and G(t, 7) is the amplification matrix. 
We shall use the amplification matrix G and phase P only for the linearized 

version of Eq. (2), and we shall not include the effects of boundary conditions 
(except in the result section). For all finite-difference methods the true phase is 
approximated reasonably well only for the ‘long-wave components of the sofation 
while the higher waves are poorly represented. Thus, P(<? 11) is of importance only 
for f and q small. We define X as At/Ax and u as At/A;. Then, by consistency we 
have for second order schemes that 

where N is a homogeneous polynomial of degree three. Furthermore, if only 
centered differences are used then His a real matrix. We therefore, have 

When the matrices A and B commute we can expand the inverse appearmg Sn 
Eq. (5) in a Neumann series. Then Eq. (5) can be written as 

tan P((, q) = -(AA< + (rB7) + ET@, 9) ~ &iAf + o&)3 + O((‘” -t :+). s(S) 

We define P&$, 7) as the analytic phase. Thus, we have 
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Combining these expressions we have the following formula for the numerical 
phase error. 

E(L d = P(-C, d - J’At,r) 

where we have also included cubic terms in the expansion of the arctangent function 
in Eq. (6). This expression reduces to 

E(t, 4 = f&f, 4 - Q(W + a&Y + W4 + q4) (8) 

We note that when E is positive for [, 7 positive then the numerical solution lags 
behind the analytic solution. 

Before we describe any schemes we introduce some space saving notation. 
Let ,uz and 6, be the averaging and difference operators in the x direction defined 
by 

/-bbt’i,j = XJvi+1/2,j + 1Yi-li2,j), 8&j = ll’i+l/e,j - “i-l,e,j ) 

with a similar notation for the operators in the y direction. It then follows that 

II. NINE-POINT SCHEMES 

1. As the first scheme we analyze the original Lax-Wendroff method [ 171 
which can also be written as a two-step method (see Thommen [26], Singleton [24]). 

41) 

G(f, q) = I - @A sin 5 + oB sin 7) 

- [h’A’(l - cos e) + oaBz(l - cos -q) + ha ( AB z BA ) sin f sin ~1. 

(10) 
This method is stable for &A, B) < I/l/S (see [IT]). we also have 

E@, 4 = HM3 + uBq3 - (tit + aBq13) + O(t4 + s”). 
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It is evident that if $(A) + a,~@) < 1 and t and 11 are positive then E is positive, 
i.e.? there is a phase lag. We shall use Eq. (11) as a basis for co-mparison with the 
other schemes to be described. 

2. MacCormack 1193 introduced several schemes that use data at only seven 
points from the nine point lattice. A sample scheme from this group is 

The amplification matrix associated with this scheme is 

This scheme has the advantage of requiring few operations. However, .for many 
matrices A and B the scheme is unconditionally unstable. For exam@ if 
AA = --oB then 

Rotation of the four variant schemes described by MacCormack is no guaramee 
of stability either. MacCormack remarks that if one considers A: = S((L~X)~~“> 
then the scheme is stable. However, with this type of assumption most weakly 
unstable schemes would become stable (see Richtmyer and Morton, p. 231 for a 
discussion of this apparent paradox). Furthermore, the stability condition given 
by MacCormack [lg] is not dimensionally correct, i.e., the stability condition 
depends on the units used which is obviously not desirable. Nevertheless in many 
situations the instability may be weak enough so that the equations can be inte- 
grated numerically especially if some viscosity is added. Examples of this behavisr 
will be shown in connection with other schemes. However, should this scheme be 
used one must always be careful of possible linear instabilities. With this scheme 
we have a phase error 
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For the case where A and B commute this expression is identical with that 
obtained for the Lax-Wendroff method. However, when A and B do not commute 
(and the numerical phase is not analytically defined) the computational results, 
given later, indicate that the MacCormack scheme has a larger phase lag than the 
Lax-Wendroff method. 

3. The next scheme that we consider is actually a two parameter family of 
schemes. This family is a generalization of a method introduced by Burstein [3]: 

In this class of schemes we predict, to first order, a temporary value of w  at time 
t + 01 At and then average to obtain second order accuracy at t + dt. Burstein 
introduced the schemes with Y = 0 and 01 = f (in Eq. (15)) which, following 
Wilson [27], we shall call the rotated Richtmyer method, and also v = 0, 01 = 1, 
which has been used extensively for many different problems. The amplification 
matrix associated with this family is 

G(f, ?I> = I- 16~ sin2 i sin* 5 + i (AA (1 - -& (1 - cos rl)) sin f 

+oB(1--;il;-(l- cos 0) sin 7) - !j (PA*(l - cos t)(l + cos 7j) 

-I- a2B2(L - cos q)(l + cos f) + Xa(AB + BA) sin 5 sin q). (16) 

If v is positive but less than l/16 then the family is dissipative and hence stable 
for some range of the eigenvalues of A and B. However, if v is zero then this 
family can be unstable except for the rotated Richtmyer method. In fact 

G(7~/2, T) = I - (oB)” + i(l - l/24 hA. 

Thus, if AA is in some sense large compared with UB we shall have an eigenvalue 
of G which is greater than 1, unless 01 = l/2. In particular if oB = &t then 

1 G(~T/2, z-)1” = 1 - (2~~ - (1 - 1/24”)(XA)z + Ebb 

and the schemes are unstable when E < l/d/2(1 - l/2%). For the rotated Richtmyer 
case both Wilson and Zwas have shown that it is stable if p(hA, oB) < l/d! 
where p(A, B) denotes the larger of the spectral radii of A and B [27, 281. As with 
the MacCormack method the instabilities are weak. Burstein has used his scheme, 
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cx = I, in some cases for tens of thousands of time cycles without any artificial 
viscosity (see for example [4]). In other cases an artificial viscosity was reqked 
for long term stability. For the particular case of the fluid dynamic matrices we 
have not been able to estimate the amplification matrix for the complete range of 
dependent values. IIowever for hypersonic flow U? r> c we can show that the 
scheme is unstable if (l/l/s> Au < u’tr or (l/-\/S) w < Au. 

In particular, we tried this scheme on the following test problem. 

Ifi + g(llz + 21,) = 0, 0 < x < 1: 0 < y < 1; 

a, Y? 0) = f(x, u), eA Y, t> = 4, y, Q, u(x7 0, it) = 5&x, 1, fjv 

The solution of this equation is u = f(x - it, J! - at). A mesh of 80 x. 20, wirh 
csB = i/4 was chosen so that with a: = 1 we have I C(37/2, n)I” = 1.016. When the 
initial condition was chosen as sin(x + y), no instabilities were noticed afte: 
IO complete periods were traversed (about 1600 cycles). With random initial data 
there was a linear growth in the energy for about 500 cycles when exponential 
growth set in. Thus, even with random data, which is worse than that whkh 
occurs in physical problems, the instabilities are slight and can be controlled by an 
artificial viscosity. In fact the mild instability ~23 be benefkia! in preventing 

excessive damping from overwhelming the solution. Nevert,heless, one must be 
careful to avoid linear instabilities. It is impossible to verily whether the instabilities 
that occur in the blunt body problem are nonlinear instabilities as Burstein claims 
or are in fact linear instabilities. Furthermore, if the scheme is even mildly unssabie 
convergence is no longer guaranteed even for numerical solnrions that display no 
energy growth (see Richtmyer and Morton [B]). As was to be expected the rotated 
Richtmyer method showed no instabilities even after 1600 cydes and with random 
initial data. 

Fromm [9] has suggested that since most schemes have phase lags one shouid 
predict the solution at a future time and then average. This reasoning indica:es 
that to decrease the phase error one should choose a large value of 01. Th!s in <act 
is the justification for considering values of 2 that are greater than 1. The phase 
error for Eq. (15) is 

We notice that the phase error for this family is greater than that for the Lax- 
Wendroff method for all CL. However, as seen in Fig. 2 we can achieve better 
phase representations by choosin g v greater than zero and E sufhciently large 
(even though these involve fourth order terms). Thus, if one is willing to accept 
some artifricial fourth order damping a smaller phase error than that given. by 



232 ELI TURKEL 

Lax-Wendroff can be achieved. In addition by choosing v positive we have gained 
linear stability. Though this term can also be added to the Lax-Wendroff scheme 
it is not to be recommended since there will be a large amount of damping in the 
scheme. 

Equation (17) shows that the phase error decreases as we increase CX. However, 
at the same time we decrease the allowable step size. There seems to be general 
correlation in. these types of schemes that better stability properties implies a 
poorer representation of the correct velocities. This can be seen heuristically 
from Eqs. (4) and (8). Thus, #for stability we would want H([, q), the third order 
terms, to be more positive while for improved phase we would want H to be more 
negative. However, as will be shown there are exceptions to this rule. 

4. A popular class of methods which allow maximal time steps are based on the 
concept of time splitting as introduced by Strang [25]. Eilen, Gottlieb and Zwas [7] 
have suggested one such efficient scheme which uses only the nine-point lattice. 
For the basic scheme one can use a one dimensional version of the generalized 
Burstein method (Eq. (15)) as suggested by McGuire and Morris [20]. Thus, the 
one dimensional scheme to be considered is 

w = p.# - &G,f n 

,l’n+l 1 1,)” - (lpx) x&f; - (1 - 1/2a) &cLzf n (18) 

and we denote this method in operator notation as 

wn+l = L,,(W). 

We can then construct a two dimensional method by letting 

However, this method would be of second order only if the matrices A and B 
commute. Therefore, Eilon, Gottlieb and Zwas suggest a slight modification of 
the Strang LzipLyLz12 scheme, i.e., alternating the order of the operators at each 
time step. Thus 

w-n+% = L,L,L,L,w”. (19) 

This method is of second order after an even number of steps for all A and B. 
In fact since the error for one step is one order higher than the accumulated error 
this method is of second order for all time steps. 

Note, that in contradistinction to the generalized Burstein scheme the amplifica- 
tion matrix associated with Eq. (19) does not depend on the parameter a appearing 
in Eq. (18). The dependence on a appears only in the nonlinear terms. Since this 
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effect is problem-dependent and usually of much smaller significance than the 
linear terms we shall confine our attention to the linearized version of Eq. ~19) 
in which case the parameter CT no longer appears. The amplification matrix (for 
one time step) for this scheme is the product of two matrices each derived from a 
one dimensional scheme and so this scheme, as with all time splitting sche,mes, 
has maximal stability properties, i.e., p(XA, oB) < 1~ The phase error for this 
scheme is 

As before, we assume that A and B commute. We can simplify this formula to 
obtain 

E((, $ = Q[(hA - (hA)3) e” + (aB - (oB)~)] + Cl@ + y’). 117) !.‘-L) 

By the stability condition we have that p(.kA) < 1 and so p(XA - (hA)3~ :< I. 
Wence we have a phase lag as we had with the other schemes analyzed thus fa:. 
Also, in the scalar case if A equals B we can choose the time step so that hA = i 
and the phase error is of fourth order. For small time steps this error is similar to 
that of the Lax-Wendroff scheme (Eq. (11)) since the third order terms in dr are 
small. For larger time steps the Lax Wendroff scheme is no longer stable whik 
the phase error for the time splitting method decreases. Thus, for most problems 
the time splitting method as given by (18, 19) seems to give comparable phase 
errors to the Lax-Wendroff method while allowing a krger allowable time step. 
Both schemes display comparable speed per time step. 

5. For purposes of future reference w e record the amplification matrix and 
phase error for the nonstaggered Leapfrog method. 

We see that within fourth-order terms this phase error is identical with that for the 
Lax-Wendroff method. In Fig. 1 we see that for the special case of hA = oB = 1,l4 
the phase errors for both these schemes are extremely close for all 6 = q. In 
addition, the Leapfrog scheme has the stability condition p(XA + oB) < 1 which 
is better than the Lax-Wendroff condition but no% as good as the splitting 
techniques. 
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III. OTHER SCHEMES 

The schemes that we have considered thus far all have a phase error of the form 

-%t, 7) = QGW t3 + COB) v3 - @A$ + m)31 + PIG‘& 9 k”r 
+ p264, B> fy2 + WC4 + q3, (24) 

where Pi are polynomials in their arguments. If one wishes to change the leading 
terms in this expression then one must use data beyond the nine-point lattice, in 
particular one must use data beyond three mesh points in the x and y directions 
independently. As previously mentioned an obvious choice is to use third- or 
fourth-order methods. However, in this study we have confined our attention to 
second-order schemes. 

6. Fromm [9] introduced a new scheme with the specific purpose of reducing 
the phase error by using data beyond the nine-point lattice. He considers the time 
splitting scheme L,L, but modifies the one dimensional scheme. For a scalar 
equation the operator L, given in Eq. (18) is replaced by 

wnfl = wn - ATp2 6w + $(A” S2w + (A - 2A) T2 a2w), 

where T is a shift operator defined by 

(25) 

T,t , j  = j”‘i+lh 3 A > 0, 
1 “‘j-112 2 A < 0, 

and hence this is a nonlinear one dimensional operator which uses data at four 
mesh points at the previous time level. As before if one wishes to extend this 
scheme to vector equations using noncommuting matrices one must alternate 
the order of the operators L, , L, at each time step. The one dimensional amplifica- 
tion matrix for this scheme, with A > 0, is 

G(l) = I - &t[sin” t + h&l - cos [) + (AA - 2)(1 - cos t)] 

- &IA sin .$[l + cos [ - @A - 2)(1 - cos [)I. (26) 

Fromm does not present any stability analysis for this scheme; however, choosing 
.$ = v we have that 

G(n) = I - @A(2hA - 2(hA - 2)) = I - 2hA. 

Thus a necessary condition for stability is that hp(A) < l/2 and similarly for B. 
The phase error for the two dimensional scheme is 

E(t, T) = - $$[hA(l - hA)(l - 2hA) t3 

+ uB(1 - &)(I - 2aB) ~~1 + O@ + 73. (27) 
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Thus? this scheme has a phase gain. Compared with the unmodified time splitting 
version (Eq. (21)) we have replaced the factor (l/6)(1 + AA) by -(1,/32)(1 - 2hAj. 
Hence there is the benefit of a smaller coefficient together with a matrix term 
which vanishes identically for AA = (l/2)1 (similarly for the matrix B) and should 
be, in general, smaller for time steps within the stability range. Thus, Fromm has 
achieved a slightly smaller phase error but at the expense of requiring a larger 
domain of dependence, a nonlinear scheme and a smaller aHowabIe time step. 

7. Another nonlinear method we mention is embodied in the SHASTA code 
introduced by Boris and Book [2]. The one-dimensional version uses a seven-pcint 
lattice at the previous time level; however, it is second order fer the fluid dynamic 
equations only in the case of uniform flow. As with the Fromm scheme there is 
a smaller phase error but at the expense of a larger domain of 
which can cause difficulties near boundaries. Furthermore, at least for I>e 
scalar case with a linearized difference scheme: the permissible time step is one 
half that of the splitting methods. In addition the SHASTA code requires 
about two and a half times as much computational time per time step as does the 
optimized scheme [Eqs. (18, (19)]. It would therefore seem that for problems 
where accurate velocity approximations are important that a higher order scheme 
would yield better approximations with less computer time and a smaller domain 
of dependence. Nevertheless, this method has the property of introducing a.ddi- 
tional compression (rather than the usual diffusion) which can be useftti for flu3 
dynamic problems requiring a sharply defined shock front. 

8. In introducing the Leapfrog scheme with a staggered mesh we have another 
scheme whose one dimensional version extends beyond the three-poinr lattice 
and hence the two dimensional version extends beyond the nine point rectazgdar 
lattice. For this scheme 

The amplification matrix of this scheme is 

w, 4 = I- @A sin < + crl? sin q)3 

+ i@A sin < + a5 sin ye) sqrt(l ~- @A sin [ + oB sin T>“), 29) 

and the phase error is 

E(& 71) = Q(hAE3 + aBy3) - $,(hAf + aBy)” + O(f* + T”). (3Q;j 

The phase error for this scheme differs from that of the nonstaggered Leapfrog 
method in terms that depend on (hA)3, (uB)3. Thus, for small time steps the twc 

sets of phase errors are similar but for larger time steps the staggered Leapfrog 
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has a slightly smaller phase lag. However, this method is at a disadvantage near 
boundaries where half the variables are defined at the boundary while another 
half are defined a mesh width away. However, for problems with periodic boundary 
conditions where dissipation is not needed (e.g., global circulation models) this is 
probably the best of the second-order methods (see Morton [22]). 

9. Kreiss and Oliger [15] have suggested an extension of the Leapfrog method 
which is second order in time but fourth order in space. Thus, 

,p+1 = W--l - h(106& - 4Sy,3)f” - u(106,~y - 46&3) g”. (30 

Then, 

m?, rl) = --g@& + uBy)3 + O(.if” + r4). (32) 

Thus, this fourth order Leapfrog method has a phase gain instead of the usual 
phase lag. With this analysis which includes the time dependent terms the phase 
error behaves as a second-order method in contrast to the analysis of Kreiss and 
Oliger which ignores the time dependence. When the time step decreases we see 
that the error in Eq. (32) decreases as a cubic in the time step in contrast to the 
other methods discussed until now for which the error decreases linearly as the 
time step decreases. This indicates that this fourth order Leapfrog method would 
be more competitive at a smaller time step. Experience has shown however, that 
if the time steps are chosen too small then the errors accumulate and the total 
error is no longer small. Oliger has indicated that the optimal time step is approxi- 
mately $(A, B) = l/4 which is below the allowable time step based on stability 
criteria. 

10. Crowley [6] has also introduced a scheme which uses points beyond the 
nine-point lattice in order to improve the phase error. For this scheme 

As with the splitting schemes one must alternate the order of the factor to preserve 
the second-order accuracy. The amplification matrix for this scheme with E = 7 
is 

G(& f) = I - $(hA + uB)” sin” &l - &7AB(l - Cos 5)) 

- i(AA + uB) sin &l - $(l - cos t)[(XA)e + (uB)” 

+ ghuAB(1 + cos 4) - &Yu2A”B”(l - cos ‘$)I}, (34) 
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and no stability proof was offered for the scheme due to its complexity. A.iso, for 
the special case of [ = q, the phase error is 

I?([, () = Q((hA + OB) ‘$3 - (AA + cd?)” (3) $- $@A + CB) 

x ((AA)2 + (cd)’ + XaA j.35) 

The first step of this method is similar to the time splitting methods and this 1s 
reflected rn the similarity of Eq. (35) to Eq. (20). ‘Thus, this method of Crow!ey 
which extends beyond the nine-point lattice seems to of?er no advantage over the 
nine-point time splitting method. 

11. Historically the first two step two dimensional scheme was introduced by 
Rfchtmyer and has as its domain of dependence a nine-point diamond-shaped 
lattice [23]. Because of this nonrectangular shape the scheme has difficu!ties near 
boundaries. In addition there is a weak instability due to the lack of coupling 
between neighboring points (Kasahara [14]). GourIay and Morris [lOi have 
generalized this scheme by considering a family of methods that utilizes the 
thirteen points located within a diamond-shaped lattice with a diagonal length 
of two mesh widths. This scheme is given by 

We see that this method is similar to the generalized Burstein method [I153 pre- 
viously discussed although the domain of dependence of the schemes differ, The 
amplification matrix for this scheme is 

In this case the scheme is stable for all PZ with the stabSty condition given by 

The phase error associated with the scheme is 
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As before we find that as (II increases the phase lag decreases but the allowable 
time step also decreases. In any case this phase lag is larger than the corresponding 
one for the generalized Burstein method, Eq. (17). Thus, there does not seem to 
be any gain in using the larger lattice. In particular there seems to be no advantage 
of the original Richtmyer method over the rotated Richtmyer method (see also 
Wilson [27]). 

IV. RESULTS 

The characterization of the numerical phase has thus far been limited to third 
order terms, i.e. terms of fourth order or higher in 4 and 77 have been neglected. 
We now consider the true numerical phase, arctan((Im G)(Re G)-l). In order to 
compare the phase representations of the schemes we restrict ourselves to the 
scalar case with A = B and choose the time step so that ti = l/4 which is within 
the stability range of most of the schemes considered. In order for the plots to 
be two-dimensional (a comparison of many three-dimensional perspective plots 
would be difficult to decipher) we have only considered the case =$ = 9. With 
these restrictions the amplification matrix of the MacCormack scheme (Eq. (15)) 
reduces to that of the Lax-Wendroff scheme (Eq. (10)) and so it will not be treated 
separately. In Fig. 1 we compare the analytic phase together with the true numerical 
phase for the nine-point schemes considered above. The schemes considered in 
Fig. 1 are as follows: (1) analytic phase error, (2) first order Lax scheme (see 
Ref. [16]), (3) Strang splitting scheme L,L, [Eq. (19)], (4) Lax-Wendroff [Eq. (9)], 
(5) Leapfrog [Eq. (22)], and the generalized Burstein scheme [Eq. (15)] with 
(6) 01 = l/4, (7) OL = l/2, (8) 01 = 1, (9) DI = 100. All these schemes are considered 
without any artificial fourth order viscosities, i.e. v = 0. These graphs confirm 
our previous assertion that the Leapfrog and Lax-Wendroff methods have similar 
phase errors. The phase lag for the generalized Burstein method is not as small but 
improves as a increases. With 01 = 100 the phase error is virtually indistinguishable 
from that of the Leapfrog scheme. As is to be expected the first order Lax method 
is clearly inferior to the second order methods. In fact the phase error is infinite 
at [ = ~-12, and is shown in the plot as finite due to a cutoff to prevent offscale 
plotting. In Table I is given the true numerical phase for these schemes, at 
.$ = n-15. 

The introduction of a fourth order viscosity term in Eq. (15) clearly has had 
no effect on our phase analysis which considers only terms through third order. 
Nevertheless, Figs. 2 and 3 demonstrate that this viscosity can have a profound 
effect on the phase error for large E. In Fig. 2 is plotted the true numerical phase 
for (1) analytic solution, (2) Lax-Wendroff, and the generalized Burstein scheme 
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FIG. 1, Complete numerical phase of various nine-point schemes. See text for details. 

TA3LE I 

Scheme Phase at 5’ = a/5 

1. Analytic 0.31416 
2. Lax 0.42205 

3. Splitting 0.29528 

4. Lax-Wendroff 0.29868 
5. Leapfrog 0.29830 
6. Burstein a = 1,‘4 0.24356 
7. ” a = 1:2 0.27099 
8. ” n=l 0.28455 
9. ” 01 = 100 0.29788 
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FIG. 2. Complete numerical phase for generalized Burstein scheme with a viscosity coefficient 
of 0.0625. See text for details. 

with (3) (y. = 1, v = 0, (4) 01 = 1, v = 0.0625, (5) 01 = 100, v = 0, (6) 01 -= 100, 
v = 0.0625. Figure 3 is similar to Fig. 2 with v = 0.125 in plots 4 and 6. We note 
that only plots 4 and 6 are new in these graphs with the others plotted for com- 
parison’s sake only. In Fig. 2 we see that with v = 0.0625 there is zero phase 
error at 5 = QT while all previous cases showed no numerical motion at all to 
these short waves. However, for small [ the effect of the viscosity term is small 
as was expected. As seen in the numerical experiments (to be described) the effect 
of the viscosity terms on the phase error is rather small which confirms our assump- 
tion that the phase error is meaningful only for f small and that even complete 
agreement for the high frequency waves does not improve the computational 
phase error. For completeness Figs. 4,5 and 6 show the magnitude of the amplifica- 
tion factors corresponding to Figs. 1, 2 and 3 respectively. 

As a computational test of the nine-point schemes previously discussed we 
have chosen a sample problem from linear elasticity. This problem has the 
advantage of having constant coefficients so that Fourier analysis is applicable. 



Fro. 3. Similar to 
an artificial viscosity. 

Fig. 2 but with a viscosity coeEcient of 0.125 fcr those schemes conizining 

Frc,. 4: Norm of the amplification matrix for those schemes appearing in Fig. 1. 
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FIG. 5. Norm of the amplification matrix for those schemes appearing in Fig. 2. 

XI 
FIG. 6. Norm of the amplification matrix for those schemes appearing in Fig. 3. 

Furthermore, because of the simplicity of the equations, analytic solutions are 
known so that a meaningful comparison of schemes can be made. Yet the problem 
is realistic in that a system of five coupled equations is given rather than a scalar 
equation, and the matrices A and B do not commute. Also wave propagation 
occurs only in the x direction so that the x and y directions are not treated sym- 
metrically. 
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The equations are those of linear elasticity, i.e., 

where p, h, ,X are positive constants. These equations are integrated in the domain 
0 < x < Q, and 0 < 3’ < b with periodic&y conditions in the x’ direction and 
symmetry for zd, fll , rY2 about the axis 1’ = 0 and antisymmetry for t’, r3”, , Thus 
we are considering the propagation of a symmetric wave which is traveiling d~.ak 
an infinite bar. At y -= b the boundary condition is the free surface rcqu~reme~t 
that the normal and shear stresses be zero, i.e., r12 = rC2 = 0, The sound speeds 
associated with (39) are &t((h + 2ih)/p)1i’, -j&~/p)~/~ ? 0. 

A particular solution to this problem is 

where the parameters appearing in Eq. (40) have the following meaning 

The sound speeds cl , c2 are given by 
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B is an arbitrary constant and 01 and ,8 are complex numbers. The free surface 
boundary conditions are satisfied if u is a solution to the transcendental equation 

(42) 

with 01 = a(u) and /3 = p(c) given by Eq. (41). The reader is referred to Mindlin [21] 
for further details about this and similar problems. 

If one chooses as initial conditions Eq. (40) with t = 0 then Eq. (40) is the 
unique solution to the given initial-boundary valued problem. The parameters 
used for the test problem were 

B = 1, SZ=b=l, p = 0.175, x = 0.3, p = 0.2. 

With f = 27rjQ the wave length of the solution is equal to one period. Ax and Ay 
were both chosen as l/16. With these parameters the sound speeds are approxi- 
mately 

Cl = 2.0, c2 = 1.069. 

The third mode was chosen from Eq. (40) which yields a value for z, of approxi- 
mately 1.6975 which implies that cy. is an imaginary number with /3 real. A short 
bar, 9 = b, together with a low mode solution to Eq.’ (42) were chosen. This 
combination of parameters increases wave dispersion in the solution compared 
to the wave motion in the longer bar which was considered by Clifton [5]. Since 
long waves are less subject to dispersion the problem described in [5] is not as 
severe a test of the numerical phase error accumulation generated by a difference 
scheme. 

Comparing the various nine point schemes after four complete periods we 
consider the following characteristics of the solutions in Tables II through V. Let 

The time step At is constant throughout the time integration and is chosen so that 
a complete period takes an integer number of time steps. Let 

WCHG = 
initial energy - energy at time t 

initial energy 3 

where the elastic energy of the system is given by 

w = e (22 + 2) + 1 
2 2p(3x + 2y) [(A + y>(& + 73 - hT11T22 + (3X + 2/L&J. 

WCHG measures the L., stability of the method; when WCHG is negative the 
norm of the numerical solution is increasing in time in contrast to the norm of 
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the analvtic solution which is independent of time. When the energy has doubled 
within the four periods of the solution (160 time steps at CFL = 0.471) then ;he 
method is classified as unstable for the time step used. Let 

PPIASE ~ pos(analytic) - pos(numeric) 
pos(analytic)- 

where pos denotes the position of the zero of the u component of velocity. The 
numerical position of the zero is calculated by linear interpolation for a particular ~7 
value and then averaged over all the y coordinate lines. A fourth order visc.osity 
term of the form --v~,%~~NJ, 0 < u < 1,/S, was also included for the schemes 
considered. 

The schemes considered in Tables II-V are: 

LW-Lax-Wendroff method, Eq. (9)? 
LF- Leapfrog method, Eq. (22) 

S-Strang splitting method L,L,L,L, , Eqs. (18) and (19). 
Bl -Generalized Burstein scheme with a = a: Eq. (15), 
B2- Generalized Burstein scheme with a = f (rotated Richtmyer), 
B3-Generalized Burstein scheme with 1: = 1 (original Burstein), 
B44Generalized Burstein scheme with a = 100, 

Ml -MacCormack method using forward differences in first step, Eq. (i2), 
M2-MacCormack method using forward s and backward JJ differences. 
M3 -MacCormack method using backward x and forward 4’ differences. 
M4-MacCormack method using backward differences in first step: 
M5-rotational use of Ml, M2, M3, M4 at successive time steps. 

We see from Table II that even with relatively small time steps the time splitting 
scheme has a phase error as small as any of the other schemes. The Lax-Wecdroff 
method remains stable even though we have exceeded GEL = 1/(8)1;9. Note that 
the Leapfrog scheme has a phase error very close to that of the Lax-Wendrof 
method. The phase error for the rotated Richtmyer method is quite large while 
that for the Burstein scheme (X = 1) is intermediate. The MacCormack method 
displays quite different properties depending on which variant is chosen. Even the 
alternation of the variants yields a scheme which is begirming to go unstable, 
though it can be stabilized by the addition of viscosity terms. In this case the 
phase error is comparable to that of the Burstein scheme. 

Table III is also based on data from the elastic wave propagation probiem beet 
with a larger time step. The Lax-Wendroff and Leapfrog methods have now both 
become unstable while the splitting scheme remains stable and even has a smaller 
phase lag than in Table II. The generalized Burstein scheme is stable if 3~ is chosen 
sufficiently small but the phase error is very large, while the MacCormack scheme 
has also become unstable. Thus, although the MacCormack scheme involves few 
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TABLE II 

CFL = 0.471 

Scheme ” WCHG Phase 

LW 0. 0.1299 
LF 0. -0.0088 
S 0. 0.1755 
Bl 0. 0.3432 
B2 0. 0.1714 
B3 0. 0.0345 
B4 0. -0.1209 
B4 0.0625 0.3960 
Ml 0. 0.1527 
M2 0. unstable 
M2 0.0625 unstable 
M3 0. unstable 
M3 0.0625 unstable 
M4 0. 0.7846 
M5 0. -0.5501 
M5 0.0625 0.0937 

0.027 
0.029 
0.026 
0.109 
0.068 
0.047 
0.028 
0.026 
0.026 

-0.143 
0.045 
0.044 

TABLE III 

CFL = 0.754 

Scheme v WCHG Phase 

LW 0. -0.7484 
LW 0.0625 unstable 
LF 0. unstable 
S 0. 0.1785 
Bl 0. 0.4704 
B2 0. 0.2086 
B3 0. -0.0278 
B3 0.0625 0.3003 
B4 0. unstable 
B4 0.0625 -0.8164 
MI 0. -0.3637 
Ml 0.0625 unstable 
M4 0. -0.8457 
M5 0. unstable 
M5 0.0625 unstable 

0.020 

0.020 
0.101 
0.060 
0.042 
0.040 

0.021 
0.023 

-0.155 
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function evaluations (though not less than L&J it suffers from the need of a 
small time step. We also see from this example that the added viscosity term can, 
at times, cause a decrease in the stability of the solution. 

TABLE IV 

CFL = 0.897 

Scheme Y WCHG Phase 

s 0. 0.0044 
Bl 0. 0.4950 
B2 0. 0.0629 
B2 0.0625 03517 
B3 0. unstable 
B3 0.0625 unstable 

0.019 
0.095 
0.060 
0.051 

With a time step of almost CFL = 0.9 we see in Tabie IV that only the time 
splitting scheme and the generalized Burstein scheme a = l/4, I/2. remain stable 
without the use of viscosity terms, though as before the phase error for the case 
a = l/4 remains large. When we increase the time step to CFL = 0.947 even the 
Strang splitting scheme becomes unstable as seen in Table V. This is in agreement 

TABLE V 

CFL = 0.942 

Scheme lJ WCHG Phase 

S 0. -0.3400 
Bl 0. 0.4945 
B2 0. -0.5203 
B2 0.0625 0.0835 
B3 0. unstabk 

0.021 
0.094 
0.052 
0.059 

with the experiments of Gourlay and Morris [II] who also found instabilities in 
another splitting method for CFL greater than 0.9; this may possibly be due to 
the boundary treatment. Thus for the dynamic elastic equations the genera~~~~~ 

urstein scheme with 01 = l/4 allows the largest computational time step (though 
we have shown that it is unconditionally unstable for other systems of equations). 
The results of these tables are confirmed by many similar computer runs that were 
completed but not included due to lack of space. 

These results were calculated using space extrapolation, for the indented 
variables, at the boundary y = b, which is the only boundary where extra condi- 
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tions need be imposed. Characteristic methods (see Clifton [5]) were also tried, 
for several schemes, but with little effect on the phase errors. It thus seems that 
correct boundary treatment is more crucial for stability than for phase representa- 
tions. 

V. CONCLUSIONS 

When one begins to solve a new problem one always encounters the question 
of which difference scheme to use. With this study we assume that the choice has 
been limited to explicit Eulerian schemes. With the high-speed computers presently 
available there seems to be no advantage to first order codes and hence only 
higher order methods need to considered. 

For smooth problems where dissipation is not wanted the Leapfrog method 
seems to be an ideal method. Where boundaries do not cause any complications, 
e.g. global circulation models, the staggered Leapfrog or the fourth order (in 
space) Leapfrog of Kreiss and Oliger can be used, otherwise the nonstaggered 
Leapfrog offers a good phase representation with a reasonable time step. However, 
even with smooth problems one must be careful of nonlinear instabilities (see 
Fornberg [8]). For problems with shocks an artificial viscosity is needed and it 
seems more natural to go to dissipative schemes where the viscosity is built in and 
there is no need to guess at the appropriate values of the constants which may 
appear in the artificial viscosity. 

Among the nine-point schemes considered the time splitting scheme [Eqs. (18) 
and (19)] offers the maximal time step together with a phase lag as small as any 
of the other schemes considered. Thus, both from the viewpoints of computer 
speed and decreased phase errors this scheme seems the most appropriate; i.e., 
it works for problems where velocities are important and for asymptotic type 
problems where long computing times exist but phase errors are relatively unimpor- 
tant. For cases where time-dependent boundary conditions may cause difficulties 
for the splitting technique the Lax-Wendroff method, written as a two-step 
method [Eq. (9)], has a small phase error but also requires a small time step. The 
methods of Burstein and MacCormack can display instabilities for particular 
choices of the matrices A and B, and so care must be exercised when using these 
schemes without additional artificial viscosity. In many cases however these 
schemes allow larger time steps than the Lax-Wendroff method with less dissipa- 
tion and with a phase error close to that of the Lax-Wendroff scheme. Finally, 
the rotated Richtmyer scheme has a phase error much larger than that of the 
Lax-Wendroff or splitting schemes and should not be used for wave propagation 
problems. 

With periodic boundaries or simple boundary conditions it may be advisable 
to use schemes that require data beyond the nine-point lattice. The most obvious 
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approach is to use methods that are third or fourth order in space and time or at 
least fourth order in space only. Among the second-order schemes that go beyond 
the nine-point rectangular lattice are the family of schemes introduced by Courla:.~ 
and Morris, Eq. (34). This family, which includes the original Richtmeyer method? 
has a larger phase error than most of the nine-point schemes and hence should 
never be used for wave propagation problems. The scheme introduced by Eior!s 
and Book requires a large amount of computation pe: time step and is not res!i; 
second order due to the introduction of nonlinear cutoffs. ;BhusP it is at a dis~inc; 
disadvantage when compared with third- or fourth-order schemes. Nevertheless. 
for problems where compression of the shock region is important this method 
should prove useful. The scheme introduced by Fromm is also a nonlinear scheme 
even for linear problems and it also suffers from the requirement of smah per,- 
missible time steps, Hence, here too it is not clear that there is any computatronal 
advantage over higher order schemes which do not have a larger domain cf 
dependence and give dramatically better phase representations. There also seems 
to be no advantage to the splitting technique Lri.7LaL2!z which requires more data 
and more function evaluations than the splitting E,L, described in Eq. (39). 

The conclusions reached above strictiy hold only for linear problems. Ir-: ;he 
nonlinear case the phase error is no longer independent of the dissipation intro- 
duced by the scheme and so is problem depend.enr. Thus, both the Burstein and 
MacCormack schemes have provided answers to many fluid dynamic problems 
even though both may suffer from weak instabilities. Both t1-z two-sten Lax-- 
WendroE (Thommen) method and the Burstein scheme were appiied to a cem.- 
phcated problem in fluid dynamics with moving boundaries. The vekocities 
predicted by the Lax-Wendroff method differed from those of the 
by only about one percent using a coarse mesh of about 10 x 15 in the orginel 
domain, with the Lax-Wendroff method being closer to the experimental value. 
Thus, in this particular case the difference between the two schemes was negligible, 
although in was not for the linear elastic test problem. Nevertheless the results for 
the linear problems should at least provide a guide for the selection of a scheme 
for nonlinear problems. At the very least it is impractical to try each scheme for 
a particular ncnlinear problem to discover which scheme is best for that par~icuiar 
problem. Thus, at least on practical grounds the coccPusions reached can be 
applied to nonlinear as well as linear problems. Thus, the nine point Sxan.g 
spiitting method is a most reasonable first try in solving any problem foilowed by 
Leapfrog [Eq. (22) or (28)] or the Thommen scheme [Eq. @)I. If a small phase 
error is of great importance then one should use higher order schemes. which of 
necessity use data beyond a nine-point rectangular lattice. It also appears that the 
Larger a time step one uses, within the scheme’s stability range, the sma!ler rhe 
phase error. This is a phenomenon which is we19 known for shocks but is also true 
for smooth problems. 



250 ELI TURKEL 

ACKNOWLEDGMENTS 

The author thanks James Pearson of Picatinny Arsenal for his encouragement and in particular 
for his suggestion of using the elastic wave propagation problem. The author would also like to 
thank S. Burstein, M. Ciment, D. Gottlieb and A. Jameson for their many helpful suggestions and 
corrections to the original manuscript. 

REFERENCES 

1. A. ARAKAWA, J. Comput. Phys. 1 (1966), 119. 
2. J. P. BORIS AND D. L. BOOK, J. Compat. Phys. 11 (1973), 38. 
3. S. Z. BURSTEIN, High order accurate difference methods in hydrodynamics, in “Nonlinear 

Partial Differential Equations,” (W. F. Ames, Ed.) Academic Press, New York, 1967. 
4. S. Z. BURSTEIN, Nonlinear time dependent problems in fluid dynamics, in AGARD lecture 

series No. 14 on Advances in Numerical Fluid Dynamics, 1972. 
5. R. J. CLIFTON, Quart. Appl. Math. 25 (1967), 97. 
6. W. P. CROWLEY, J. Comput. Phys. 1 (1967), 471. 
7. B. EJLON, D. GOTTLIEB AND G. ZWAS, J. Comput. Phys. 9 (1972), 387. 
8. B. FORNBERG, Math. of Comp. 27 (1973), 45. 
9. J. E. FROMM, J. Comput. Phys. 3 (1968), 176. 

10. A. R. GOURLAY AND J. L. MORRIS, Muth. qf Comp. 22 (1968), 28. 
11. A. R. GOURLAY AND J. L. MORRIS, Math. of Comp. 22 (1968), 715. 
12. A. R. GOURLAY AND J. L. MORRIS, J. Comput. Phys. 5 (1970), 229. 
13. A. GRAMMELDVEDT, Monthly Weather Rev. 97 (1969), 384. 
14. A. KASAHARA, Monthly Weather Rev. 93 (1965), 27. 
15. H. 0. KREISS AND J. OLIGER, Tellas 24 (1972), 199. 
16. P. D. LAX, Commun. Pure Appl. Math. 7 (1954), 159. 
17. P. D. LAX AND B. WENDROFF, Commun. Pare Appl. Math. 17 (1964), 381. 
18. R. W. MACCORMACK, The effect of viscosity in hypervelocity impact cratering, AIAA Paper 

No. 69-354 (1969). 
19. R. W. MACCORMACK, Numerical solution of the interaction of a shock wave with a laminar 

boundary layer in “Proceedings Second International Conference on Numerical Methods in 
Fluid Dynamics” (M. Holt, ed.), Springer-Verlag, New York, 1970. 

20. G. R. MCGUIRE AND J. L. MORRIS, J. Comput. Phys. 11 (1973), 531. 
21. R. D. MINDLIN, Waves and vibrations in isotropic elastic plates, in “Proceedings First 

Symposium on Naval Structural Mechanics,” (J. N. Goodier, N. J. Hoff, Ed.). 
22. K. W. MORTON, Proc. Roy. Sot. (London) A323 (1971), 237. 
23. R. D. RICHTMYER AND K. W. MORTON, “Difference Methods for Initial Value Problems,” 

Interscience-Wiley, New York (1967). 
24. R. E. SINGLETON, Lax-Wendroff scheme applied to the transonic airfoil problem, in AGARD 

Conferences on Transonic Aerodynamics 35 (1968), 2. 
25. G. W. STRANG, SIAM Num. Anal. 5 (1968), 506. 
26. H. U. THOMMEN, Z. Agnew. Math. Phys. 17 (1966), 369. 
27. J. C. WILSON, J. Imt. Math. Applic. 10 (1972), 238. 
28. G. ZWAS, Numer. Math. 20 (1973), 350. 


